Что такое маршрутизация. Введение в IP-маршрутизацию Маршрутизация в сетях передачи данных

Сущность, цели и способы маршрутизации. Задача маршрутизации состоит в выборе маршрута для передачи пакетов от отправителя к получателю. Она;имеет смысл в. сетях, где не только необходим, но и

возможен выбор оптимального или приемлемого маршрута. Речь идет; прежде всего, о сетях с произвольной (ячеистой) топологией, в; которых реализуется коммутация пакетов. Однако в современных сетях со смешанной топологией (звездно-кольцевой, звездно-шинной, многосегментной) реально стоит и решается задача выбора маршрута для передачи кадров, для чего используются соответствующие средства, например маршрутизаторы.

В виртуальных сетях задача маршрутизации при передаче сообщения, расчленяемого на пакеты, решается единственный раз, когда устанавливается виртуальное соединение между отправителем и по-лучателем. В дейтаграммных сетях, где данные передаются в форме дейтаграмм, маршрутизация выполняется для каждого отдельного пакета.

Выбор маршрутов в узлах связи ТКС производится в соответствии с реализуемым алгоритмом (методом) маршрутизации.

Алгоритм маршрутизации - это правило назначения выходной линии связи данного узла связи ТКС для передачи пакета, базирующееся на информации, содержащейся в заголовке пакета (адреса отправителя и получателя, и информации о загрузке этого узла (длина очередей пакетов) и, возможно. ТКС в целом.

Основные цели маршрутизации заключаются в обеспечении"

минимальной задержки пакета при его передаче от отправителя к получателю;

максимальной пропускной способности сети, что достигается, в частности, нивелировкой(выравниванием) загрузки линий связи ТКС;

максимальной защиты пакета от угроз безопасности содержащейся" в нем информации;

надежности доставки пакета адресату;

минимальной стоимости передачи пакета адресату. Различают следующие способы маршрутизации.

Централизованная маршрутизация реализуется обычно в сетях с централизованным управлением. Выбор маршрута для каждого пакета осуществляется в центре управления сетью, а узлы сети связи только воспринимают и реализуют результаты решения задачи маршрутизации. Такое управление маршрутизацией уязвимо к отказам центрального узла и не отличается высокой гибкостью.

Распределенная (децентрализованная) маршрутизация выполняется главным образом в сетях с децентрализованным управлением. Функции управления маршрутизацией распределены между узлами сети, которые располагают для этого соответствующими средствами. Распределенная маршрутизация сложнее централизованной, но отличается большей гибкостью.

Смешанная маршрутизация характеризуется тем, что в ней в определенном соотношенииреализованы принципы централизованной, и распределённой маршрутизации.. К ней относится, например, гибридная адаптивная маршрутизация (см. ниже).

Задача маршрутизации в сетях решается при условии, что кратчайший маршрут, обеспечивающий передачу пакета за минимальное время, зависит от топологии сети,:пропускной способности линий связи, нагрузки на линии связи. Топология сети изменяется в результате отказов узлов и линий связи и отчасти при развитии ТКС (подключении новых узлов и линий связи). Пропускная способность линий связи определяется типом передающей среды и зависит от уровня шумов и параметров аппаратуры, обслуживающей линии. Наиболее динамичным фактором является нагрузка на линии связи,

изменяющаяся довольно быстро и в трудно прогнозируемом направлении.

Для выбора оптимального маршрута-каждый"узел связи должен располагать информацией о состоянии ТКС в целом всех остальных узлов и линий связи. Данные о текущей топологии сети и пропускной способности линий связи предоставляются узлам без затруднений. Однако нет способа для точного предсказания состояния нагрузки в сети. Поэтому при решении задачи маршрутизации могут использоваться данные о состоянии нагрузки, запаздывающие (из-за конечной скорости передачи информации) по отношению к моменту принятия решения о направлении передачи пакетов. Следовательно, во всех случаях алгоритмы маршрутизации выполняются в условиях неопределенности текущего и будущего состояний ТКС.

Эффективность алгоритмов маршрутизации оценивается следующими показателями:

Временем доставки пакетов адресату;

Нагрузкой на сеть, которая при реализации данного алгоритма создается потоками пакетов, распределяемыми по линиям и узлам сети. Количественная оценка нагрузки осуществляется длиной очередей пакетов в узлах;

Затратами ресурсов в узлах связи (временем работы коммуникационной ЭВМ, емкостью памяти). Факторы, снижающие эффективность алгоритмов маршрутизации:

Передача пакета в узел связи, находящийся под высокой нагрузкой; " "

Передача пакета в направлении, не приводящем к минимальному"времени его доставки;

Создание на сеть дополнительной нагрузки за счет передачи служебной информации, необходимой для реализации алгоритма. : -

Методы маршрутизации . Различают три вида маршрутизации - простую, фиксированную и адаптивную. Принципиальная разница между ними - в степени учета изменения топологии и нагрузки сети при решении задачи выбора маршрута.

Простая маршрутизация отличается тем, что при выборе маршрута не учитывается ни изменение топологии сети, ни изменение ее состояния (нагрузки). Она не обеспечивает направленной передачи пакетов и имеет низкую эффективность. Ее преимущества - простота реализации алгоритма маршрутизации и обеспечение устойчивой работы сети при выходе из строя отдельных ее элементов. Из этого вида некоторое практическое применение получили случайная и лавинная маршрутизации.

Случайная маршрутизация характеризуется тем, что для передачи пакета из узла связи выбирается одно, случайно выбранное, свободное направление. Пакет «блуждает» по сети и с конечной вероятностью когда-либо достигает адресата. Естественно, что при этом не обеспечивается ни оптимальное время доставки пакета, ни эффективное использование пропускной способности сети.

Лавинная маршрутизация (или заполнение пакетами.всех свободных выходных направлений) предусматривает передачу пакета из узла по всем свободным выходным линиям. Поскольку это происходит в каждом узле, имеет место явление «размножения-» пакета, что.резко ухудшает использование пропускной способности сети. Значительное ослабление этого недостатка достигается путем уничтожения в каждом узле дубликатов (копий) пакета и продвижения по маршруту только одного пакета. Основное преимущество такого метода - гарантированное.обеспечение оптимального времени доставки пакета адресату, так как из всех направлений, по которым передается пакет, хотя бы одно обеспечивает такое время. Метод может использоваться в незагруженных сетях, когда требования по минимизации времени и надежности доставки пакетов достаточно высоки.

Фиксированная маршрутизация характеризуется тем, что при выборе маршрута учитывается изменение топологии сети и не учитывается изменение ее нагрузки. Для каждого узла назначения направление передачи выбирается по таблице маршрутов (каталогу), которая определяет кратчайшие пути. Каталоги составляются в центре управления сетью. Они составляются заново при изменении топологии сети. Отсутствие адаптации к изменению нагрузки приводит к задержкам пакетов сети. Различают одно-путевую и много путевую фиксированные маршрутизации. Первая строится на основе единственного пути передачи пакетов между двумя абонентами, что сопряжено с неустойчивостью к отказам и перегрузкам, а вторая - на основе нескольких возможных путей между двумя абонентами, из которых выбирается наиболее предпочтительный путь. Фиксированная маршрутизация применяется в сетях с мало изменяющейся топологией и установившимися потоками.пакетов. "."

Адаптивная маршрутизация отличается тем, что -принятие.решения о направлении передачи пакетов осуществляется с учетом изменения, как топологии, так и нагрузки сети. Существуют несколько модификаций адаптивной маршрутизации, различающихся тем, какая именно информация используется при выборе маршрута. Получили распространение такие модификации, как локальная, распределенная, централизованная и гибридная адаптивные маршрутизации.

Локальная адаптивная маршрутизация основана на использовании информации, имеющейся в данном узле и включающей: таблицу маршрутов, которая определяет все направления передачи пакетов из этого узла; данные о состоянии выходных линий связи (работают или не работают); длину очереди пакетов, ожидающих передачи. Информация о состоянии других узлов связи не используется. Таблица маршрутов определяет кратчайшие маршруты, обеспечивающие доставку пакета адресату за минимальное время. Преимущество такого метода состоит в том, что принятие решения о выборе маршрута производится с использованием самых последних данных о состоянии узла. Недостаток метода заключается в его «близорукости», поскольку выбор маршрута осуществляется без учета глобального состояния всей сети. Следовательно, всегда есть опасность передачи пакета по перегруженному маршруту.

Распределенная адаптивная маршрутизация основана на использовании информации, указанной для локальной маршрутизации, и данных, получаемых.от.соседних узлов- сети. В каждом узле формируется таблица маршрутов (каталог) ко всем узлам назначения; где указываются маршруты с минимальным временем задержки пакетов. До начала-работы сети, это время оценивается, исходя из топологии сети. В процессе работы сети узлы периодически обмениваются с соседними узлами, так называемыми таблицами задержки, в которых указывается нагрузка (длина очереди пакетов) узла. После обмена таблицами задержки каждый -узел перерассчитывает задержки и корректирует маршруты с учетом поступивших данных и длины очередей в самом узле. Обмен таблицами задержки может осуществляться не только периодически, но и асинхронно в случае резких изменений нагрузки или топологии сети. Учет состояния соседних узлов при выборе маршрута существенно повышает эффективность алгоритмов маршрутизации, но это достигается за счет увеличения загрузки сети служебной информацией. Кроме того, сведения об изменении состояния узлов распространяются по сети сравнительно медленно, поэтому выбор маршрута производится по несколько устаревшим данным.

Централизованная адаптивная маршрутизация характеризуется тем, что задача маршрутизации для каждого узла сети решается в центре маршрутизации (ЦМ). Каждый узел периодически формирует сообщение о своем состоянии (длине очередей и работоспособности линий связи) и передает его в ЦМ. По этим данным в ЦМ для каждого узла составляется таблица маршрутов. Естественно, что передача сообщений в ЦМ, формирование и рассылка таблиц маршрутов - все это сопряжено с временными задержками, следовательно, с потерей эффективности такого метода, особенно при большой пульсации нагрузки в сети. Кроме того, есть опасность потери управления сетью при отказе ЦМ.

Гибридная адаптивная маршрутизация основана на использовании таблиц маршрутов, рассылаемых ЦМ узлам сети, в сочетании с анализом длины очередей в.узлах. Следовательно, здесь реализуются принципы централизованной и локальной маршрутизации. Гибридная маршрутизация компенсирует недостатки централизованной (маршруты, формируемые центром, являются несколько устаревшими) и локальной («близорукость» метода) маршрутизации и воспринимает их преимущества: маршруты центра соответствуют глобальному состоянию сети, а учет текущего состояния узла обеспечивает своевременность решения задачи.

Для начала уточним некоторые понятия:

  • сетевой узел (node) - любое сетевое устройство с протоколом TCP/IP;
  • хост (host) - сетевой узел, не обладающий возможностями маршрутизации пакетов;
  • маршрутизатор (router) - сетевой узел, обладающий возможностями маршрутизации пакетов

IP-маршрутизация - это процесс пересылки unicast -трафика от узла-отправителя к узлу –получателю в IP-сети с произвольной топологией.

Когда один узел IP-сети отправляет пакет другому узлу, в заголовке IP-пакета указываются IP-адрес узла отправителя и IP-адрес узла-получателя. Отправка пакета происходит следующим образом:

  1. Узел-отправитель определяет, находится ли узел-получатель в той же самой IP-сети, что и отправитель (в локальной сети), или в другой IP-сети (в удаленной сети). Для этого узел-отправитель производит поразрядное логическое умножение своего IP-адреса на маску подсети, затем поразрядное логическое умножение IP-адреса узла получателя также на свою маску подсети. Если результаты совпадают, значит, оба узла находятся в одной подсети. Если результаты различны, то узлы находятся в разных подсетях.
  2. Если оба сетевых узла расположены в одной IP-сети, то узел-отправитель сначала проверяет ARP-кэш на наличие в ARP-таблице MAC-адреса узла-получателя. Если нужная запись в таблице имеется, то дальше отправка пакетов производится напрямую узлу-получателю на канальном уровне. Если же в ARP-таблице нужной записи нет, то узел-отправитель посылает ARP-запрос для IP-адреса узла-получателя, ответ помещает в ARP-таблицу и после этого передача пакета также производится на канальном уровне (между сетевыми адаптерами компьютеров).
  3. Если узел-отправитель и узел-получатель расположены в разных IP-сетях, то узел-отправитель посылает данный пакет сетевому узлу, который в конфигурации отправителя указан как "Основной шлюз" ( default gateway ). Основной шлюз всегда находится в той же IP-сети, что и узел-отправитель, поэтому взаимодействие происходит на канальном уровне (после выполнения ARP-запроса). Основной шлюз - это маршрутизатор, который отвечает за отправку пакетов в другие подсети (либо напрямую, либо через другие маршрутизаторы).

Рассмотрим пример, изображенный на рис. 4.5 .


Рис. 4.5.

В данном примере 2 подсети: 192.168.0.0/24 и 192.168.1.0/24 . Подсети объединены в одну сеть маршрутизатором. Интерфейс маршрутизатора в первой подсети имеет IP-адрес 192.168.0.1 , во второй подсети - 192.168.1.1 . В первой подсети имеются 2 узла: узел A (192.168.0.5 ) и узел B (192.168.0.7 ). Во второй подсети имеется узел C с IP-адресом 192.168.1.10 .

Если узел A будет отправлять пакет узлу B, то сначала он вычислит, что узел B находится в той же подсети, что и узел A (т.е. в локальной подсети), затем узел A выполнит ARP-запрос для IP-адреса 192.168.0.7 . После этого содержимое IP-пакета будет передано на канальный уровень, и информация будет передана сетевым адаптером узла A сетевому адаптеру узла B. Это пример прямой доставки данных (или прямой маршрутизации, direct delivery).

Если узел A будет отправлять пакет узлу C, то сначала он вычислит, что узел C находится в другой подсети (т.е. в удаленной подсети). После этого узел A отправит пакет узлу, который в его конфигурации указан в качестве основного шлюза (в данном случае это интерфейс маршрутизатора с IP-адресом 192.168.0.1 ). Затем маршрутизатор с интерфейса 192.168.1.1 выполнит прямую доставку узлу C. Это пример непрямой доставки (или косвенной маршрутизации, indirect delivery) пакета от узла A узлу C. В данном случае процесс косвенной маршрутизации состоит из двух операций прямой маршрутизации.

В целом процесс IP-маршрутизации представляет собой серии отдельных операций прямой или косвенной маршрутизации пакетов.

Каждый сетевой узел принимает решение о маршрутизации пакета на основе таблицы маршрутизации, которая хранится в оперативной памяти данного узла. Таблицы маршрутизации существуют не только у маршрутизаторов с несколькими интерфейсами, но и у рабочих станций, подключаемых к сети через сетевой адаптер. Таблицу маршрутизации в системе Windows можно посмотреть по команде route print . Каждая таблица маршрутизации содержит набор записей. Записи могут формироваться различными способами:

  • записи, созданные автоматически системой на основе конфигурации протокола TCP/IP на каждом из сетевых адаптеров;
  • статические записи, созданные командой route add или в консоли службы Routing and Remote Access Service ;
  • динамические записи, созданные различными протоколами маршрутизации (RIP или OSPF).

Рассмотрим два примера: таблицу маршрутизации типичной рабочей станции, расположенной в локальной сети компании, и таблицу маршрутизации сервера, имеющего несколько сетевых интерфейсов.

Рабочая станция.

В данном примере имеется рабочая станция с системой Windows XP, с одним сетевым адаптером и такими настройками протокола TCP/IP: IP-адрес - 192.168.1.10 , маска подсети - 255.255.255.0 , основной шлюз - 192.168.1.1 .

Введем в командной строке системы Windows команду route print , результатом работы команды будет следующий экран (рис. 4.6 ; в скобках приведен текст для английской версии системы):


Рис. 4.6.

Список интерфейсов - список сетевых адаптеров, установленных в компьютере. Интерфейс MS TCP Loopback interface присутствует всегда и предназначен для обращения узла к самому себе. Интерфейс Realtek RTL8139 Family PCI Fast Ethernet NIC - сетевая карта.

Сетевой адрес - диапазон IP-адресов, которые достижимы с помощью данного маршрута.

Маска сети - маска подсети, в которую отправляется пакет с помощью данного маршрута.

Адрес шлюза - IP-адрес узла, на который пересылаются пакеты, соответствующие данному маршруту.

Интерфейс - обозначение сетевого интерфейса данного компьютера, на который пересылаются пакеты, соответствующие маршруту.

Метрика - условная стоимость маршрута. Если для одной и той же сети есть несколько маршрутов, то выбирается маршрут с минимальной стоимостью. Как правило, метрика - это количество маршрутизаторов, которые должен пройти пакет, чтобы попасть в нужную сеть.

Проанализируем некоторые строки таблицы.

Первая строка таблицы соответствует значению основного шлюза в конфигурации TCP/IP данной станции. Сеть с адресом "0.0.0.0" обозначает "все остальные сети, не соответствующие другим строкам данной таблицы маршрутизации".

Вторая строка - маршрут для отправки пакетов от узла самому себе.

Третья строка (сеть 192.168.1.0 с маской 255.255.255.0 ) - маршрут для отправки пакетов в локальной IP-сети (т.е. той сети, в которой расположена данная рабочая станция).

Последняя строка - широковещательный адрес для всех узлов локальной IP-сети.

Последняя строка на рис. 4.6 - список постоянных маршрутов рабочей станции. Это статические маршруты, которые созданы командой route add . В данном примере нет ни одного такого статического маршрута.

Теперь рассмотрим сервер с системой Windows 2003 Server, с тремя сетевыми адаптерами:

  • Адаптер 1 - расположен во внутренней сети компании (IP-адрес - 192.168.1.10 , маска подсети - 255.255.255.0 );
  • Адаптер 2 - расположен во внешней сети Интернет-провайдера ISP-1 (IP-адрес - 213.10.11.2 , маска подсети - 255.255.255.248 , ближайший интерфейс в сети провайдера - 213.10.11.1 );
  • Адаптер 3 - расположен во внешней сети Интернет-провайдера ISP-2 (IP-адрес - 217.1.1.34 , маска подсети - 255.255.255.248 , ближайший интерфейс в сети провайдера - 217.1.1.33 ).

IP-сети провайдеров - условные, IP-адреса выбраны лишь для иллюстрации (хотя вполне возможно случайное совпадение с какой-либо существующей сетью).

Кроме того, на сервере установлена Служба маршрутизации и удаленного доступа для

Маршрутизация – это процесс определения на основе данных из таблицы маршрутизации оптимального пути от узла-источника к узлу-получателю в условиях избыточных связей.

В процессе маршрутизации выделяют две смысловые части: определение дальнейшего пути пакета и непосредственно его пересылка по этому путь.

В соответствии с этими смысловыми частями процесс маршрутизации можно разделить на два иерархически связанных уровня.

Уровни работы маршрутизации

      Уровень маршрутизации . На этом уровне происходит работа с таблицей маршрутизации. Таблица маршрутизации служит для определения адреса (сетевого уровня) следующего маршрутизатора или непосредственно получателя по имеющемуся адресу (сетевого уровня) и получателя после определения адреса передачи выбирается определенный выходной физический порт маршрутизатора. Этот процесс называется определением маршрута перемещения пакета . Настройка таблицы маршрутизации ведется протоколами маршрутизации. На этом же уровне определяется перечень необходимых предоставляемых сервисов

      Уровень передачи пакетов . Перед тем как передать пакет, необходимо: проверить контрольную сумму заголовка пакета, определить адрес (канального уровня) получателя пакета и произвести непосредственно отправку пакета с учетом очередности, фрагментации, фильтрации и т.д. Эти действия выполняются на основании команд, поступающих с уровня маршрутизации.

В связи с этим можно провести следующую аналогию.

Интерпретация процесса маршрутизации Маршрутизация бывает

Выделяют два типа маршрутизации: прямую и косвенную. При прямой маршрутизации отправитель в определенной IP-сети может напрямую передавать кадры любому получателю в той же сети. При этом не требуется функциональность IP-маршрутизации.

Косвенная маршрутизация происходит в том случае, если отправитель и получатель находятся в разных IP-сетях. Косвенная маршрутизация требует, чтобы отправитель передавал пакеты маршрутизатору для доставки их через распределённую сеть.

На рисунке, если узел 10.2.2.1 захочет послать пакет узлу в пределах сети 10, например, 10.2.2.2, то это будет прямая маршрутизация, а при отправке пределов в сеть, скажем, 192.168.1 – косвенная.

Прямая маршрутизация

Обычно мы ассоциируем маршрутизаторы с устройствами, которые действительно выполняют маршрутизацию, однако любое поддерживающее протокол IP устройство способно выполнять эту функцию. На рисунке узел 10 присоединен непосредственно к сети 10, и способен маршрутизировать пакеты к любому другому узлу в сети 10.

Узлу 10.1.1.1 необходимо передать пакет узлу 10.2.2.2. Первое, что он делает - определяет, находится ли IP-адрес получателя в одной с ним сети. Для этого сравнивает свой номер сети 10 с номером сети получателя 10. Делает вывод, что узел-получатель находится в одном с ним сегменте сети.

С помощью протокола APR определяет MAC-адрес узла-получателя и посылает пакет по этому адресу.

Косвенная маршрутизация

В следующем примере предполагается, что узел 10.1.1.1 имеет пакет, который нужно отправить узлу 172.16.0.1 .

    Изучение адреса показывает, что узел назначения находится не а одной с предающим узлом сети. Узел 10.1.1.1 сконфигурирован так, что любые пакеты, требующие косвенной маршрутизации, передаются его шлюзу по умолчанию - маршрутизатору 1.

    Чтобы доставить пакет маршрутизатору 1, узлу 10.1.1.1 необходим MAC-адрес маршрутизатора 10.3.3.3. Если МАС-адрес узлу 10.1.1.1 неизвестен, он отправляет ARP-запрос, чтобы его получить. Затем пакет, предназначенный для 172.16.0.1 отправляется маршрутизатору 1.

    Маршрутизатор 1 осознает, что он подсоединен к сети 172.16. и полагает, что узел 172.16.0.1 должен быть частью этой сети. Маршрутизатор 1 реализует свою собственную процедуру прямой маршрутизации и посылает ARP-запрос, ища узел назначения.

При отправке пакета от узла 10.1.1.1 до узла 192.168.1.1 узел-отправитель сравнит номер своей сети с номером сети назначения и выяснит, что получатель находится в другой сети. Пакет будет отпрален шлюзу по умолчанию, в данном случае Маршрутизатору 1. Пусть в таблице маршрутизатора нет записи о сети 192.168.1, но шлюзом по умолчанию является маршрутизатор 2, тогда он перешлет пакет ему, а тот доставит пакет до получателя.

Если же узел 10.1.1.1 попытается отправить пакет узлу 192.164.1.1, то этот пакет будет перенаправлен маршрутизатору 1. Но так как он ничего не знает про сеть 192.164.1 , то будет выполнено одно из самых главных правил маршрутизации: если пакет получен, и таблица маршрутизации не содержит информации о его сети назначения, пакет следует отбросить.

Таблица маршрутизации для IP- сетей

Задачу выбора конечного маршрута из нескольких возможных решают маршрутизаторы, а так же конечные узлы. Маршрут выбирается на основании имеющейся у этих устройств информации о текущей конфигурации сети, а также на основании указанного критерия маршрута.

Чтобы по адресу сети назначения можно было выбрать рациональный маршрут дальнейшего следования пакета, каждый конечный узел и маршрутизатор анализируют специальную информационную структуру, которая называется таблица маршрутизации.

В этой таблице в столбце

    Адрес сети назначения – указываются адреса всех сетей, которым данный маршрутизатор может передавать пакеты

    Следующий маршрутизатор в пути – IP-адрес удаленного маршрутизатора, которому необходимо послать пакет для доставки его по назначению

    Номер выходного порта – по которому следует отправить пакет

    Расстояние до сети назначения – это любая метрика, используемая в соответствии с заданным в сетевом пакете классом сервиса. Это может быть количество хопов(переходов), время прохождения пакета по линиям связи, надежность линий связи или другая величина, отражающая качество данного маршрута по отношению к конкретному классу сервиса. Если маршрутизатор поддерживает несколько классов сервиса пакетов, то таблица маршрутов составляется и применяется отдельно для каждого вида сервиса (критерия выбора маршрута).

В таблице маршрутизации может содержаться несколько записей об одной и той же сети- получателя и запись о шлюзе по умолчанию.

В данный момент (вспомним ) у нас в Москве использованы адреса 172.16.0.0-172.16.6.255. Предположим, что сеть может ещё увеличиться здесь, допустим, появится офис на Воробьёвых горах и зарезервируем ещё подсети до 172.16.15.0/24 включительно.
Все эти адреса: 172.16.0.0-172.16.15.255 - можно описать так: 172.16.0.0/20. Эта сеть (с префиксом /20) будет так называемой суперсетью , а операция объединения подсетей в суперсети называется суммированием подсетей (суммированием маршрутов, если быть точным, route summarization)

Приносим извинения за гигантские простыни, видео тоже с каждым разом становится всё длиннее и невыносимее. Постараемся в следующий раз быть более компактными.

Все заинтересованные, но незарегистрированные приглашаются на беседу в ЖЖ .
За подготовку статьи большое спасибо моему соавтору и моей жене за львиное терпение.

Для очень недовольных: эта статья не абсолют, она не раскрывает теоретические аспекты в полной мере и, потому не претендует на роль полноценной документации. С точки зрения авторов это вспомогательной средство для новичков, волшебный стимул, если желаете. На хабре у вас есть возможность поставить минус, а не доказывать нашу неправоту. Прошу вас, поступите именно так, потому что ваши недовольства встретят лишь вышеприведённые аргументы.

  • intervlan routing
  • router on a stick
  • Добавить метки

    Маршрутизация процесс сетевого уровня, определяющий лучший путь доставки пакета информации получателю. Пути передачи пакетов информации называют маршрутами. Лучшие определенные маршруты к «знакомым» получателям записываются и хранятся в таблице маршрутизации.

    Различают два вида маршрутизации:

    • Статическая маршрутизация
    • Динамическая маршрутизация

    Деление происходит в зависимости от способа записи в таблицу маршрутизации.

    Выполняют маршрутизацию, специальные устройства – маршрутизатороры или обычные компьютеры с несколькими сетевыми картами.

    Маршрутизация в сетях на основе служб без установления соединения

    Рассматривать процесс маршрутизации будем на условном примере.

    По условию примера, Хосту 1 нужно передать сообщение Хосту 2 (рис. 1).

    При этом длина сообщения в 4 раза длиннее допустимого к передаче. Из-за этого сообщение нужно разбить на 4 части (пакета) и последовательно отослать на маршрутизатор А.

    Маршрутизатор А соединен только с маршрутизаторами В и С. Соответственно, все пакеты с Хоста А могут передаваться только на маршрутизаторы В и С.

    Все возможные пути движения пакетов информации записаны во внутренней таблице маршрутизации. Записи в таблице маршрутизации соответствуют реальным соединениям.

    Итак, через маршрутизатор А нужно передается 4 пакета. Согласно таблицы маршрутизации, действующей на данный момент времени, пакеты 1-3 передаются на маршрутизатор С. Далее согласно таблицы маршрутизации маршрутизатора С, пакеты передаются на Е — маршрутизатор, который связан непосредственно с хостингом В. Все пакеты 1-3 доставлены.

    На следующий момент времени на маршрутизаторе А сменилась таблица маршрутизации, предположим из-за «пробки» на участке пути А-С-Е. Согласно новой таблицы маршрутизации, маршрутизатор А передает пакет 4 по пути маршрутизации А-В-Д, далее Е и на Хост В.

    Отмечу, что таблицы маршрутизации оформляются по алгоритмам маршрутизации.

    Это пример был для сетей с неустановленным соединением. А как осуществляется маршрутизация при уже установленном соединении.

    Маршрутизация в сетях на основе служб с установлением соединения

    В сетях с установлением соединения все пакеты информации передаются по единому маршруту. Это обеспечивается установлением на весь сеанс связи надежного виртуального канала.

    Задача, передать информацию от Хоста 1 на Хост 2.