Циклическая частота показывает чему. Циклическая частота. Непрямые методы измерения

6.Колебания

6.1.Основные понятия и законы

Движение называется периодическим , если

x(t) = x(t + T ) , где T

Колебание

периодическое

движение

положения равновесия. На рис.6.1 в

качестве

изображены

периодические

негармонические

колебания

положения

равновесия

x 0 = 0.

Период T – это время, за

совершается

колебание.

колебаний в единицу времени

Круговая (циклическая) частота

ω= 2 πν =

Гармоническими

называются колебания, при которых смещение

от положения равновесия в зависимости от времени

изменяется по закону синуса или косинуса

x = A sin (ω0 t + α)

где A

амплитуда колебаний (максимальное смещение точки от

положения равновесия), ω 0 - круговая частота гармонических колебаний, ω 0 t + α - фаза, α - начальная фаза (при t = 0).

Система, совершающая гармонические колебания, называется

классическим гармоническим осциллятором или колебательной

системой.

Скорость

и ускорение

гармонических колебаниях

изменяются по законам

X = A ω0 cos (ω0 t + α) ,

d 2 x

= −A ω0 sin (ω0 t + α) .

Из соотношений (6.6) и (6.4) получим

a = −ω 2 x ,

откуда следует, что при гармонических колебаниях ускорение прямо пропорционально смещению точки от положения равновесия и направлено противоположно смещению.

Из уравнений (6,6), (6,7) получим

+ ω0 x = 0 .

Уравнение (6.8) называется дифференциальным уравнением гармонических колебаний, а (6.4) является его решением. Подставив

(6.7) во второй закон Ньютона F = ma r , получим силу, под действием которой происходят гармонические колебания

Эта сила, прямо пропорциональная смещению точки от положения равновесия и направленная противоположно смещению, называется возвращающей силой, k называется коэффициентом возвращающей силы . Таким свойством обладает сила упругости . Силы другой физической природы, подчиняющиеся закону (6.11),

называются квазиупругими.

Колебания, происходящие под действием сил, обладающих

свойством

называются

собственными

(свободными

гармоническими) колебаниями.

Из соотношений (6.3),(6.10) получим круговую частоту и период

этих колебаний

T = 2 π

При гармонических колебаниях по закону (6.4) зависимости кинетической и потенциальной энергии от времени имеют вид

mA2 ω 0

cos 2 (ω t + α) ,

mA2 ω 0

sin 2 (ω t + α) .

Полная энергия в процессе гармонических колебаний сохраняется

EK + U = const .

Подставляя в (6.15) выражения (6.4) и (6.5) для x и v , получим

E = E K max = U max

mA2 ω 2

Примером классического

гармонического

осциллятора является легкая пружина, к которой

подвешен груз массой m

(рис.6.2). Коэффициент

возвращающей силы k называется коэффициентом

жесткости пружины.

Из второго закона Ньютона

для груза

на пружине

– kx получим

уравнение,

совпадающее

дифференциальным

уравнением

гармонических

колебаний (6.8) Следовательно, груз на пружине

при отсутствии сил сопротивления среды будет

совершать гармонические колебания (6.4).

Гармонические

колебания

представить в виде проекции на оси координат вектора, величина которого равна амплитуде A , вращающегося вокруг начала координат с угловой скоростью ω 0 . На этом представлении основан метод

векторных диаграмм сложения гармонических колебаний с

одинаковой частотой, происходящих по одной оси

x 1 = A 1 sin (ω t + ϕ 1 ) ,

x 2 = A 2 sin (ω t + ϕ 2 ) .

Амплитуда результирующего колебания определяется по

теореме косинусов

− 2 A A cos (ϕ −ϕ

Начальная фаза результирующего колебания ϕ

может быть

найдена из формулы

tg ϕ =

A 1 sin ϕ 1 + A 2 sin ϕ 2

A cosϕ + A cosϕ

При сложении однонаправленных колебаний с близкими

частотами ω 1 и ω 2

возникают биения , частота которых равна ω 1 − ω 2 .

Уравнение траектории точки, участвующей в двух взаимно перпендикулярных колебаниях

x = A 1 sin ((ω t + ϕ 1 ) ) , (6.20) y = A 2 sin ω t + ϕ 2

имеет вид

− 2

cos (ϕ −ϕ

) = sin 2 (ϕ

−ϕ ) .

Если начальные фазы ϕ 1 = ϕ 2 , то уравнение траектории – прямая

x , или y = −

ϕ = ϕ1 − ϕ2 = π 2 ,

разность

точка движется по эллипсу

Физический маятник – это твердое тело,

способное

совершать

колебания

закрепленной оси, проходящей через точку

совпадающую

(рис.6.3). Колебания являются гармоническими

при малых углах отклонения.

Момент силы тяжести относительно оси,

проходящей

является

возвращающим

моментом

выражается

соотношением

M = mgd sin

ϕ ≈ mgd ϕ.

Основное уравнение динамики вращательного движения имеет вид (см. формулу (4.18))

M = I ε , (6.23)

где I - момент инерции маятника относительно оси, проходящей через точку О , ε - угловое ускорение.

Из (6.23), (6.22) получим дифференциальное уравнение гармонических колебаний физического маятника

d 2 ϕ

ϕ = 0 .

Его решения ϕ = ϕ 0 sin ω 0 t ,

mgd .

Из (6.3) получим формулу периода колебаний физического маятника

T = 2 π I .

M = − c ϕ .

Коэффициент возвращающего момента зависит от материала проволоки и ее размеров

где G - модуль сдвига, характеризующий упругие свойства материала, r - радиус проволоки, L - ее длина.

Основное уравнение динамики вращательного

движения имеетr вид

Его решение имеет вид ϕ = ϕ 0 sin (ω 0 t + α ) ,

где ϕ - угловое смещение от положения равновесия, ϕ 0 – амплитуда

колебаний.

Сравнив уравнения (6.8) и (6.32), получим значения угловой частоты и периода крутильных колебаний

T = 2 π

Свободные колебания становятся затухающими из-за наличия сил сопротивления. Например, когда материальная точка колеблется в вязкой среде, при малых скоростях на нее действует сила

сопротивления

r - коэффициент

среды F сопр = − rv

= −rx ,

сопротивления среды. Поэтому из второго закона Ньютона

mx = − kx − rx

получим дифференциальное уравнение затухающих колебаний

M x + m x = 0 .

Его решение для случая, когда

имеет вид

x = A e−β t

sin(ω t + α ) ,

ЧАСТОТА КОЛЕБАНИЙ, числоколебаний в 1 с. Обозначается. Если T -периодот колебаний, то= 1/T; измеряется в герцах (Гц).Угловая частотаколебаний= 2= 2/T рад/с.

ПЕРИОД колебаний, наименьший промежуток времени, через который совершающая колебания системавозвращается в то же состояние, в котором она находилась в начальный момент, выбранный произвольно. Период -величина, обратная частоте колебаний.Понятие"период" применимо, например, в случае гармонических колебаний, однако часто применяется и для слабо затухающих колебаний.

Круговая или циклическая частотаω

При изменении аргумента косинуса, либо синуса на 2π эти функции возвращаются к прежнему значению. Найдем промежуток времени T, в течение которого фаза гармонической функции изменяется на 2π .

ω(t + T) + α = ωt + α + 2π, или ωT = 2π.

Время T одного полного колебания называется периодом колебания. Частотой ν называют величину, обратную периоду

Единица измерения частоты - герц (Гц), 1 Гц = 1 с -1 .

Круговая, или циклическая частоты ω в 2π раз больше частоты колебаний ν. Круговая частота - это скорость изменения фазы со временем. Действительно:

.

АМПЛИТУДА (от латинского amplitudo - величина), наибольшее отклонение от равновесного значения величины, колеблющейся по определенному, в том числе гармоническому, закону; смотри такжеГармонические колебания.

ФАЗА КОЛЕБАНИЙ аргумент функцииcos (ωt + φ), описывающей гармонический колебательный процесс (ω - круговая частота, t - время, φ - начальная фаза колебаний, т. е. фаза колебаний вначальный момент времениt = 0)

Смещение, скорость, ускорение колеблющейся системы частиц.



Энергия гармонических колебаний.

Гармонические колебания

Важным частным случаем периодических колебаний являются гармонические колебания, т.е. такие изменения физической величины, которые идут по закону

где . Из курса математики известно, что функция вида (1) меняется в пределах от А до -А, и что наименьший положительный период у нее. Поэтому гармоническое колебание вида (1) происходит с амплитудой А и периодом.

Не следует путать циклическую частоту и частоту колебаний. Между ними простая связь. Так как, а, то.

Величина называется фазой колебания. При t=0 фаза равна, потомуназывают начальной фазой.

Отметим, что при одном и том же t:

где - начальная фаза.Видно, что начальная фаза для одного и того же колебания есть величина, определенная с точнотью до. Поэтому из множества возможных значений начальной фазы выбирается обычно значение начальной фазы наименьшее по модулю или наименьшее положительное. Но делать это необязательно. Например, дано колебание, то его удобно записать в видеи работать в дальнейшем с последним видом записи этого колебания.

Можно показать, что колебания вида:

где имогут быть любого знака, с помощью простых тригонометрических преобразований всегда приводится к виду (1), причем,, ане равна, вообще говоря. Таким образом, колебания вида (2) являются гармоническими с амплитудойи циклической частотой. Не приводя общего доказательства, проиллюстрируем это на конкретном примере.

Пусть требуется показать, что колебание

будет гармоническим и найти амплитуду , циклическую частоту, периоди начальную фазу. Действительно,

-

Видим, что колебание величины S удалось записать в виде (1). При этом ,.

Попробуйте самостоятельно убедится, что

.

Естественно, что запись гармонических колебаний в форме (2) ничем не хуже записи в форме (1), и переходить в конкретной задаче от записи в данной форме к записи в другой форме обычно нет необходимости. Нужно только уметь сразу находить амплитуду, циклическую частоту и период, имея перед собой любую форму записи гармонического колебания.

Иногда полезно знать характер изменения первой и второй производных по времени от величины S, которая совершает гармонические колебания (колеблется по гармоническому закону). Если , то дифференцирование S по времени t дает,. Видно, что S" и S"" колеблются тоже по гармоническому закону с той же циклической частотой, что и величина S, и амплитудамии, соответственно. Приведем пример.

Пусть координата x тела, совершающего гармонические колебания вдоль оси x, изменяется по закону , где х в сантиметрах, время t в секундах. Требуется записать закон изменения скорости и ускорения тела и найти их максимальные значения. Для ответа на поставленный вопрос заметим, что первая производная по времени от величины х есть проекция скорости тела на ось х, а вторая производная х есть проекция ускорения на ось х:,. Продифференцировав выражение для х по времени, получим,. Максимальные значения скорости и ускорения:.

Угловая частота выражается в радианах в секунду , её размерность обратна размерности времени (радианы безразмерны). Угловая частота является производной по времени от фазы колебания:

Угловая частота в радианах в секунду выражается через частоту f (выражаемую в оборотах в секунду или колебаниях в секунду), как

В случае использования в качестве единицы угловой частоты градусов в секунду связь с обычной частотой будет следующей:

Наконец, при использовании оборотов в секунду угловая частота совпадает с частотой вращения:

Введение циклической частоты (в её основной размерности - радианах в секунду) позволяет упростить многие формулы в теоретической физике и электронике. Так, резонансная циклическая частота колебательного LC-контура равна тогда как обычная резонансная частота . В то же время ряд других формул усложняется. Решающим соображением в пользу циклической частоты стало то, что множители и , появляющиеся во многих формулах при использовании радианов для измерения углов и фаз, исчезают при введении циклической частоты.

См. также

Wikimedia Foundation . 2010 .

  • Циклитирас Константинос
  • Циклическая последовательность

Смотреть что такое "Циклическая частота" в других словарях:

    циклическая частота - kampinis dažnis statusas T sritis fizika atitikmenys: angl. angular frequency; cyclic frequency; radian frequency vok. Kreisfrequenz, f; Winkelfrequenz, f rus. круговая частота, f; угловая частота, f; циклическая частота, f pranc. fréquence… … Fizikos terminų žodynas

    ЦИКЛИЧЕСКАЯ ЧАСТОТА - то же, что угловая частота … Большой энциклопедический политехнический словарь

    Частота периодического процесса

    Частота ядра - Частота физическая величина, характеристика периодического процесса, равная числу полных циклов, совершённых за единицу времени. Стандартные обозначения в формулах, или. Единицей частоты в Международной системе единиц (СИ) в общем случае… … Википедия

    Частота - У этого термина существуют и другие значения, см. Частота (значения). Частота Единицы измерения СИ Гц Чaстота физическая в … Википедия

    ЧАСТОТА - (1) количество повторений периодического явления за единицу времени; (2) Ч. боковая частота, большая или меньшая несущей частоты высокочастотного генератора, возникающая при (см.); (3) Ч. вращения величина, равная отношению числа оборотов… … Большая политехническая энциклопедия

    циклическая инвентаризация Справочник технического переводчика

    Частота - колебаний, количество полных периодов (циклов) колебательного процесса, протекающих в единицу времени. Единицей частоты является герц (Гц), соответствующий одному полному циклу в 1 с. Частота f=1/T, где T период колебаний, однако часто… … Иллюстрированный энциклопедический словарь

    Циклическая инвентаризация (CYCLE COUNT) - Метод точной ревизии наличных складских запасов, когда запасы инвентаризуются периодически по циклическому графику, а не раз в год. Циклическая инвентаризация складских запасов обычно производится на регулярной основе (как правило, чаще для… … Словарь терминов по управленческому учету

    Угловая частота - Размерность T −1 Единицы измерения … Википедия

При изучении этого раздела следует иметь в виду, что колебания различной физической природы описываются с единых математических позиций. Здесь надо четко уяснить такие понятия, как гармоническое колебание, фаза, разность фаз, амплитуда, частота, период колебани.

Надо иметь в виду, что во всякой реальной колебательной системе есть сопротивления среды, т.е. колебания будут затухающими. Для характеристики затухания колебаний вводится коэффициент затухания и логарифмический декремент затухани.

Если колебания совершаются под действием внешней, периодически изменяющейся силы, то такие колебания называют вынужденными. Они будут незатухающими. Амплитуда вынужденных колебаний зависит от частоты вынуждающей силы. При приближении частоты вынужденных колебаний к частоте собственных колебаний амплитуда вынужденных колебаний резко возрастает. Это явление называется резонансом.

Переходя к изучению электромагнитных волн нужно четко представлять, что электромагнитная волна - это распространяющееся в пространстве электромагнитное поле. Простейшей системой, излучающей электромагнитные волны, является электрический диполь. Если диполь совершает гармонические колебания, то он излучает монохроматическую волну.

Таблица формул: колебания и волны

Физические законы, формулы, переменные

Формулы колебания и волны

Уравнение гармонических колебаний:

где х - смещение (отклонение) колеблющейся величины от положения равновесия;

А - амплитуда;

ω - круговая (циклическая) частота;

α - начальная фаза;

(ωt+α) - фаза.

Связь между периодом и круговой частотой:

Частота:

Связь круговой частоты с частотой:

Периоды собственных колебаний

1) пружинного маятника:

где k - жесткость пружины;

2) математического маятника:

где l - длина маятника,

g - ускорение свободного падения;

3) колебательного контура:

где L - индуктивность контура,

С - емкость конденсатора.

Частота собственных колебаний:

Сложение колебаний одинаковой частоты и направления:

1) амплитуда результирующего колебания

где А 1 и А 2 - амплитуды составляющих колебаний,

α 1 и α 2 - начальные фазы составляющих колебаний;

2) начальная фаза результирующего колебания

Уравнение затухающих колебаний:

е = 2,71... - основание натуральных логарифмов.

Амплитуда затухающих колебаний:

где А 0 - амплитуда в начальный момент времени;

β - коэффициент затухания;

Коэффициент затухания:

колеблющегося тела

где r - коэффициент сопротивления среды,

m - масса тела;

колебательного контура

где R - активное сопротивление,

L - индуктивность контура.

Частота затухающих колебаний ω:

Период затухающих колебаний Т:

Логарифмический декремент затухания: